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METHODS OF SOLVING SPATIAL PROBLEMS OF THE MECHANICS 
OF A DEFORMABLE SOLID IN TERMS OF STRESSES* 

T. KHOLMATOV 

The formulation in /l/ of a quasistatic problem of the mechanics of a 
deformable solid in terms of stresses is discussed, including also the 
variational formulation, which consists of solving six equations in six 
symmetric stress tensor components when six boundary conditions are satisfied. 
Methods of successive approximation are proposed for solving this problem 
and theorems on the convergence of these methods, including a "rapidly 
converging" method, whose rate of convergence is substantially higher than 
a geometric progression, are proved. 

Utilization of the Lagrange and Castigliano variational principles in the numerical solu- 
tion of boundary value problems of the mechanics of a deformable solid enables an a priori 
stable difference scheme /l/ to be compiled as well as an effective means for solving it. The 
disadvantages of applying each of these variational principles are well known. Thus, when 
using the Lagrangian, the desired quantities are displacements, and a numerical differentia- 
tion procedure that considerably reduces the accuracy of the solution obtained must be used 
to determine the state of stress. When using the Castiglianian, the problem is to seek the 
conditional extremum (in the class of tensor functions satisfying the equilibrium equations 
and the static boundary conditions), which often turns out to be difficult. 

A new variational principle, based on solving the mechanics problem of a deformable solid 
in terms of stresses /l/ is considered below , and methods of solving the quasistatic problem 
of physically non-linear mechanics of a deformable solid are described. 

1. Consider a physically non-linear medium in which the relation between the strain 
tensor components e and the stress tensor components s is given in the operator form 

eij = Gj (4 (1.1) 

On the boundary of a body z occupying a volume V let a force vector be given and let the 
following equilibrium conditions be satisfied: 

aijnJ (z - Stat 4i 12 = --Xi IT2 (1.2) 

(Xi are components of the volume force vector). 
The quasistatic problem of the mechanics of a deformable body in terms of stresses (Problem 

B /l/) is to solve six equations in six unknown stress tensor components 

EiJk,k f Y~J = 0 (1.3) 

while satisfying boundary conditions (1.2). Here 

Eijt saij,k f Gki('/~ ~mm. j -se,j,m) + ~;:~('IzE,,, i -ami 7,) + (1.4) 

E,j t&k, m - Emm. k ) + Ri (q) + 8, ((I) - Ljf?:; ((I) 

where their expressions in terms of the stresses (1.1) is substituted in place of the strain 

E, 5 is a certain arbitrary symmetric constant tensor, and R is a certain linear vector 
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operator such that R (d=O only for q= 0, while the synrmetric tensor Y is given by the 

formula 
Yll=Ri,/ (X) + RI,, (X) - g$jRk. k (X) (1.5) 

We assume that a scalar operator D dependent on the stress gradients exists and for which 
the conditions for the potentiality of the tensor (1.4) /2/ are satisfied: E,jk=L421~aij,r. 
Then the generalized solution of problem (1.2) and (1.3) can be found as the stationary point 
of the functional 

I= (C.-J- 
s 

YjjUij)dV - 5 XijoijdX + (1.6) 
1’ ?z 

where A and B are certain dimensional constants different from zero, and the symmetric flux 
tensor Xtj = Efjknk, defined on the surface Z, does not vary. 

The symmetric tensor u satisfying the integral identity 

Nlr (T) E xij (U) Tij dZ, Npr (T) I 5 (B+!?t%iknk - AXis,, k) dZ, 
r 

’ fr(z)=T s (AqiTtj. i + Butjnj%knk) dx 

for every smooth synnaetric tensor z /3/ is called the generalized solution ofProblem B. 

2. We consider a certain linear tensor-operator of the stress gradient 

ntjk = l-h (4 

so that in a functional space &ED the quantity 

(c, r), = S ntjk (‘au) 7ij. k dJ’ 
V 

(2.1) 

(2.2) 

satisfies all scalar product axioms /4/ such that the functional space D under consideration 
is a Hilbert space. Moreover, let the operator (2.1) be such that for an arbitrary symmetric 
tensor hijk in the first two subscripts, the following inequalities are satisfied 

tnijk(h)hijk<[~hlmn] hijk < Knijt; (h) hijh.9 0 <k < K (2.3) 

If 

Jlijk (au) = -c&(6116,, f &Jjn)olm, k”uij. k (2.4) 

then the first of the inequalities is equivalent to inequality (4.7) in /5/ for k=k,. 
When the operator lT in (2.4) is selected in this way, the Hilbert space D will be denotei 

by DO. 
now, if a unique generalized solution of Problem B exists for the case when the operator 

of the governing relations (1.1) is the operator II (2.1) (problem B.r), the method of succes- 
sive approximations can be constructed 

Eajk, k {rI (aU’m+l’)} = E{jk, L (II (Mm’)] - 

B("" [Eijk, k {G (ad’“‘)) f Yij] 

(m+l) 
Qj nj Ir = Spy q:m+l’ Ir = - Xi (r 

(2.5) 

starting with a certain zeroth approximation u(O) and setting m= @I,... 

Theorem 1. Let a unique generalized solution exist for problem Bn, let conditions (2.3) 
hold, and let the given surface loads and volume forces satisfy the conditions 

(2.6) 
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Moreover, let the following condition be satisfied for the zeroth approximation o(o): 

[Kf jk (s(O)) - %jk (a@‘)] hi jk < knijk (h) hjjk (2.7) 

where h is an arbitrary tensor of the third kind that is symmetric in the first two subscripts. 
Then in a certain neighbourhood 

II Q - do) lln < r (2.8) 

a generalized solution (I* of Problem B exists that is unique in this neighbourhood, and for 
any value of the iteration parameter s(O(fl<2/K) the successive approximations process 
(2.5) reduces to it, starting with a(0) , where 

(2.9) 

(The author formulated a special case of this theorem in /3/.) 
To prove the theorem we examine the identity 

s %jk (0) Tij, k dV = 1 %jk (a) ‘Q. k dV - B [ S E+jk (‘J) Gj. k dV f f~ (7) - N CT) 1 (2.10) 
Y v 

On the left in (2.10) is the scalar product (a, T),, in the space DO . According to (2.3), 
the right side is a linear functional of T in this space. Using the Sobolev imbedding theorem, 
it can be established that satisfaction of condition (2.6) is necessary for this. According 
to the Riesz theorem, this functional can be represented as the scalar product (a',~) where 
0' E Do. Hence, a certain operator H sets each tensor function CJED~ in correspondencewith 
the tensor function CJ' ED,. Thus, the question of finding the generalized solutionof Problem 
B reduces to solving an operator equation of the following kind: s--_I$cr. 

From (2.10) and conditions (2.3) we have for the two tensor functions u(i) and s(1) and 
their difference W= u(a) - u(l) 

( (Ho(*) -Ha(l), & 1 is J (w, u& - (2.11) 

fl $ lEtjk (a@‘) - Eijk (a’“)] wrjk dv 1 <Q 11 W [Ina 

Wijk =ug,n,- UK,, 

where q is determined from the second relationship in (2.9). Here 

II-BkI>II-l3K I, O<B<bB, 
II-BKI>Ii-VI, B,<<B22/K 
@* = 244 + KN 

Hence, for 0< fi <2lK the condition q<l is satisfied and inequality (2.11) is satis- 
fied if 

11 Ho(*) - Ho(') I(z .< q I( CT(*) - d’) Iln (2.12) 

Note that the least value Q= (K - k)l(K + m) of the quantity g is reached when p ti pW 
Note also that the value of fi can be changed at each iteration step so that p(*)E (0, Z/K). 

It follows from inequality (2.12) that the operator H realizes a compressed mapping /4/ 
in Do. 

Furthermore, we have 

(Ha- Ha(O), & = (Ha - HI?@), T)= + (HU(') - U(O), T)n (2.13) 

But it follows from the identity (2.10) that 

(MU(‘) - U(O), T)S = fi S [E+jk (a(‘)) - Zt<jk (a(“)] Ttj, k dl’ 
v 

(2.14) 

Applying condition (2.7) to (2.14) and setting S=~-U(~) in (2.13), we obtain 

11 Ha - @"II f (q + fiK) r < r 

i.e., the operator H that performs the compressed mapping, does not move any point from the 

circle (2.8). Hence, according to the compressed mapping principle, a generalized solution 
of Problem B exists. The uniqueness of this solution follows from /l/. 

3. To obtain the convergence of the iteration process more rapidly than the convergence 
of a geometric progression, we impose a constraintonthe second functional derivatives govern- 
ing relationship (1.1). Let the inequality 
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hold for an arbitrary third-rank tensor h that is symmetric in the first two subscripts. 
Furthermore, we assume that the spaceD,with the scalar product 

(0, q1 = 11 aEijk 
aJ ulrnn 

1 
rij, k dl’ 

\ lrn. n 

(3.2) 

is Hilbertian for the tensor field U,T defined in the finite domain V. Then the following 
theorem holds. 

Theorem 2 (The rapidly converging method /I/). Let a unique generalized solution of 
problem &exist, and let the inequalities (3.1) and 

khii,;hijk <[zh,..]h,jk <Khij&ijl;, 0 <k <Ii 

be satisfied. 
Moreover, let a be a positive number such that 

S[Eijk(c('))- E" ( tlk c+")]u~;;~dV < nla 1 uj;! kui;! t dV 
Y Y 

Then there is a number a, 0 <a< 1 such that Problem B has a unique solution u* in 
the circle 11 a!@ - 6" 11 I < r0 if the inequality 

g <u-C; *z ++V-", C E a(1 + a)-(l*)l" (3.3) 

is satisfied, where r0 is the least root of the equation qrr+Q - r+ a = 0. 
When fi- 1 the successive approximationsbeginningwith ~(0) converge to this solution if 

we take as-the operator Eijk 

where 

E;jk(h)= 2 hlmn 

(( CW - u* U1<CIG('+Q)n, &=c"=, 

The proof follows from /l/. 
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